22 research outputs found

    Weak nonlinearities: A new route to optical quantum computation

    Full text link
    Quantum information processing (QIP) offers the promise of being able to do things that we cannot do with conventional technology. Here we present a new route for distributed optical QIP, based on generalized quantum non-demolition measurements, providing a unified approach for quantum communication and computing. Interactions between photons are generated using weak non-linearities and intense laser fields--the use of such fields provides for robust distribution of quantum information. Our approach requires only a practical set of resources, and it uses these very efficiently. Thus it promises to be extremely useful for the first quantum technologies, based on scarce resources. Furthermore, in the longer term this approach provides both options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure

    Entanglement in the interaction between two quantum oscillator systems

    Full text link
    The fundamental quantum dynamics of two interacting oscillator systems are studied in two different scenarios. In one case, both oscillators are assumed to be linear, whereas in the second case, one oscillator is linear and the other is a non-linear, angular-momentum oscillator; the second case is, of course, more complex in terms of energy transfer and dynamics. These two scenarios have been the subject of much interest over the years, especially in developing an understanding of modern concepts in quantum optics and quantum electronics. In this work, however, these two scenarios are utilized to consider and discuss the salient features of quantum behaviors resulting from the interactive nature of the two oscillators, i.e., coherence, entanglement, spontaneous emission, etc., and to apply a measure of entanglement in analyzing the nature of the interacting systems. ... For the coupled linear and angular-momentum oscillator system in the fully quantum-mechanical description, we consider special examples of two, three, four-level angular momentum systems, demonstrating the explicit appearances of entanglement. We also show that this entanglement persists even as the coupled angular momentum oscillator is taken to the limit of a large number of levels, a limit which would go over to the classical picture for an uncoupled angular momentum oscillator

    Simulating chemistry efficiently on fault-tolerant quantum computers

    Get PDF
    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf. Comput.}, \textbf{6}:81, 2006]. For a given approximation error ϵ\epsilon, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(logϵ)O(\log \epsilon) or O(loglogϵ)O(\log \log \epsilon); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.Comment: 33 pages, 18 figure

    Quantum algorithm and circuit design solving the Poisson equation

    Get PDF
    The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error \varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in \varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in New Journal of Physic

    Mutations in ATP2A2, encoding a Ca2+ pump, cause Darier disease.

    No full text
    Darier disease (DD) is an autosomal-dominant skin disorder characterized by loss of adhesion between epidermal cells (acantholysis) and abnormal keratinization. Recently we constructed a 2.4-Mb, P1-derived artificial chromosome contig spanning the DD candidate region on chromosome 12q23-24.1. After screening several genes that mapped to this region, we identified mutations in the ATP2A2 gene, which encodes the sarco/endoplasmic reticulum Ca2(+)-ATPase type 2 isoform (SERCA2) and is highly expressed in keratinocytes. Thirteen mutations were identified, including frameshift deletions, in-frame deletions or insertions, splice-site mutations and non-conservative missense mutations in functional domains. Our results demonstrate that mutations in ATP2A2 cause DD and disclose a role for this pump in a Ca(2+)-signalling pathway regulating cell-to-cell adhesion and differentiation of the epidermis

    Concordance between DSM-IV and DSM-5 criteria for delirium diagnosis in a pooled database of 768 prospectively evaluated patients using the delirium rating scale-revised-98.

    Get PDF
    Background: The Diagnostic and Statistical Manual fifth edition (DSM-5) provides new criteria for delirium diagnosis. We examined delirium diagnosis using these new criteria compared with the Diagnostic and Statistical Manual fourth edition (DSM-IV) in a large dataset of patients assessed for delirium and related presentations. Methods: Patient data (n = 768) from six prospectively collected cohorts, clinically assessed using DSM-IV and the Delirium Rating Scale-Revised-98 (DRS-R98), were pooled. Post hoc application of DRS-R98 item scores were used to rate DSM-5 criteria. ‘Strict’ and ‘relaxed’ DSM-5 criteria to ascertain delirium were compared to rates determined by DSM-IV. Results: Using DSM-IV by clinical assessment, delirium was found in 510/768 patients (66%). Strict DSM-5 criteria categorized 158 as delirious including 155 (30%) with DSM-IV delirium, whereas relaxed DSM-5 criteria identified 466 as delirious, including 455 (89%) diagnosed by DSM-IV (P <0.001). The concordance between the different diagnostic methods was: 53% (ĸ = 0.22) between DSM-IV and the strict DSM-5, 91% (ĸ = 0.82) between the DSM-IV and relaxed DSM-5 criteria and 60% (ĸ = 0.29) between the strict versus relaxed DSM-5 criteria. Only 155 cases were identified as delirium by all three approaches. The 55 (11%) patients with DSM-IV delirium who were not rated as delirious by relaxed criteria had lower mean DRS-R98 total scores than those rated as delirious (13.7 ± 3.9 versus 23.7 ± 6.0; P <0.001). Conversely, mean DRS-R98 score (21.1 ± 6.4) for the 70% not rated as delirious by strict DSM-5 criteria was consistent with suggested cutoff scores for full syndromal delirium. Only 11 cases met DSM-5 criteria that were not deemed to have DSM-IV delirium. Conclusions: The concordance between DSM-IV and the new DSM-5 delirium criteria varies considerably depending on the interpretation of criteria. Overly-strict adherence for some new text details in DSM-5 criteria would reduce the number of delirium cases diagnosed; however, a more ‘relaxed’ approach renders DSM-5 criteria comparable to DSM-IV with minimal impact on their actual application and is thus recommende
    corecore